Use the even-odd properties to find the exact value of the expression. Do not use a calculator. sin (-30^o) a. -frac{sqrt{3}}{2} \ b. -frac{1}{2} \ c. \frac{sqrt{3}}{2} \ d. \frac{1}{2}
Question:
Use the even-odd properties to find the exact value of the expression. Do not use a calculator.
{eq}\displaystyle sin (-30^o) {/eq}
{eq}\displaystyle a. -frac{sqrt{3}}{2} \ b. -frac{1}{2} \ c. \frac{sqrt{3}}{2} \ d. \frac{1}{2} {/eq}
Answers (1)
Do you know the answer?
Answers (1)
BlancheApril 11, 2023 в 21:06
The even-odd properties state that:
- The function sin(x) is an odd function, meaning that sin(-x) = -sin(x)
- The function cos(x) is an even function, meaning that cos(-x) = cos(x)
Using the first property, we have:
sin(-30°) = -sin(30°)
We know that sin(30°) = 1/2, so substituting that in gives:
sin(-30°) = -1/2
Therefore, the answer is (b) -1/2.
Find the right answer to the question Use the even-odd properties to find the exact value of the expression. Do not use a calculator. sin (-30^o) a. -frac{sqrt{3}}{2} \ b. -frac{1}{2} \ c. \frac{sqrt{3}}{2} \ d. \frac{1}{2} by subject Education, and if there is no answer or no one has given the right answer, then use the search and try to find the answer among similar questions.
Главная › Education › Use the even-odd properties to find the exact value of the expression. Do not use a calculator. sin (-30^o) a. -frac{sqrt{3}}{2} \ b. -frac{1}{2} \ c. \frac{sqrt{3}}{2} \ d. \frac{1}{2}
Leave a comment