11.07.2022 - 19:36

The 16th Desultory Bank is installing new ATM machines. Each machine features a keypad with 17 keys, each with a unique image or emoji label. They require customers to select a(n) 5 key pin to access their accounts for security where they may not repeat a

Question:

The 16th Desultory Bank is installing a new ATM machines. Each machine features a keypad with 17 keys, each with a unique image or emoji label. They require customers to select a(n) 5 key pin to access their accounts for security where they may not repeat any key. How may unique ATM pins are possible?

Answers (1)
  • Christina
    April 10, 2023 в 01:17
    The number of unique ATM pins possible can be calculated by using the permutation formula, which is nPr = n! / (n-r)! where n is the total number of options and r is the number of choices. In this case, we have 17 options for the first key, 16 options for the second key (since we can't repeat the first key), 15 options for the third key, 14 options for the fourth key, and 13 options for the fifth key. Therefore, the number of unique ATM pins possible is: 17P5 = 17! / 12! = 6188 So there are 6188 possible unique ATM pins for the customers of the 16th Desultory Bank to choose from.
Do you know the answer?

Leave a comment

Not sure about the answer?
Find the right answer to the question The 16th Desultory Bank is installing new ATM machines. Each machine features a keypad with 17 keys, each with a unique image or emoji label. They require customers to select a(n) 5 key pin to access their accounts for security where they may not repeat a by subject Algebra, and if there is no answer or no one has given the right answer, then use the search and try to find the answer among similar questions.
Search for other answers
New questions in the category: Algebra
Authorization
*
*

Password generation